
Nekhoroshev type estimates for quantum propagators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 2915

(http://iopscience.iop.org/0305-4470/23/13/028)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math.  Gen .  23 119901 2915-2926 Printed in the C K  

Nekhoroshev type estimates for quantum propagators 

Jan Herczyriski 
Dipartimetito di Matematica,  L‘ni\ersitB di Bologna, Piazza di Porta S. Donato, 5. 40 127 
Bologna, Italq, on leave from I permanent address) :  Instytut Matematyki Stosokanej  i 
Mechaniki,  Uniuersytet  LVarszawski, PKiN. IXp., 00 901 Warszaua,  Poland 

ReceiLed I O  4 u g u i t  1989 

Abstract. We consider the Schrodinger operator for p o l y o m i a l l y  perturbed d-dimensional 
non-resonant harmonic oscillators. We adapt  to quantum mechanics the argument of 
Giorgilli and <;alpani. based on the Lie perturbation method and  leading I O  Nekhoroshev 
type estimates. As a consequence \ \e  J h o u  how to use the Raq‘ieigh-Schrfidinger series to 
describe the quantum propagator for exponentiallq large time:. 

1. Introduction and statement of results 

Classical perturbation theory can boast two major results, namely the  AM theorem 
and the Nekhoroshev theorem. The former gives estimates of(eternal1y) almost periodic 
motions, the existence of which is proved for a high fraction of the phase space. The 
latter gives estimates for motions occurring in all of phase space for finite times, 
exponentially large as the perturbation parameter F decreases to zero. The theorem 
of Nekhoroshev establishes a third time scale for the perturbed motion, intermediate 
between the usual time scale O( F and ‘long‘ times (o r  ‘eternity’). Some applications 
of Nekhoroshev estimates in classical mechanics are discussed in [ 1-31, 

The aim of the present paper is to study this intermediate time scale for quantum 
propagators. We consider the restricted but physically significant example of poly- 
nomially perturbed harmonic oscillators with d degrees of freedom and non-resonant 
frequencies. We study in L’(R‘’) the Schrodinger operator 

where the potential V i s  a real, bounded-beloh polynomial of degree k and 
w = ( w I , .  . . , w,] 1 E rWf satisfies the condition 

1 0 ’ Y l  ‘ 6  C , l Y l ”  ( 2 )  
d for any v f 0, V E  Z“, with W .  v = Zy w l v , ,  lvI= XI=, I v , ~ .  C , ,  y positive. The shift by 

ih lw(  in (1 )  is for reasons of simplicity, i t  gives inf a ( H , )  = 0. The eigenvalues of H, 
are all simple, equal to E,( Y )  = h w . ~ ,  Y E N “ ,  where we let O E N .  We denote the 
corresponding normalised eigenfunctions e , ,  and let PE be the projection onto the 
finite-dimensional span{ e, : Eo( I / )  E } .  As is well known [4], for each Y E  N d  there 
exist a Rayleigh-Schrodinger perturbation series E;-,] €’E,( v), divergent but Bore1 
summable to the perturbed eigen\alue E,  ( Y )  of H, . Let K ,  be the self-adjoint operator 
defined by K,e, = E , ( v ) e , .  The following is the main result of this paper. 
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Theorem 1 .  Let a = ( y + d + 2 +  k / 2 ) - ' ,  fix E 3 1 and assume h < E ( k  sup,=,, , , , ,  U , ) - ' .  

There exist positive constants A, B, E* such that for any O <  E < BE* there exist a 
unitary operator U, and a self-adjoint operator K, of the form K ,  =Z;r;6' EIK, for 
appropriate integer r( E )  satisfying 

I /(  U,H,U: - K ,  )pE jl s A E  k12 exp[-(s,/ E )" 1. (3)  

Here r ( e )  is of the order of 
of E and h. 

E* = D h E P k " ,  and A, B and D are independent 

One should perhaps remark here that defining the unitary operator fi? and the 
self-adjoint operator ke by - 

U$f," = e ,  &e,, = ~ , ( v ) e ,  

where { e E , I , } u s y ~  are the orthogonal eigenfunctions of H, associated with E,( v), 
( H E  - E,( v ) ) e , , ,  = 0 ,  we obtain immediately 

f i p H E f i :  = &. (4) 

Note, however, that usually one knows neither eF,v nor E , ( v )  except through their 
divergent Rayleigh-Schrodinger series. In other words, up to rth order of perturbation 
theory we can only achieve an approximation of (4) with error O(crf'). Since, however, 
the operators f i e ,  kF are defined abstractly we have no control over the constants in 
these estimates and so cannot put r = r ( E )  = to obtain the exponential estimate 
(3) .  The proof of (3) consists, in fact, of a concrete iterative procedure with explicit 
estimates of the remainder. 

The result of theorem 1 is useful for perturbation theory, i.e. for taking the limit 
E + 0 for h fixed. Unfortunately, the dependence of E* on h excludes the semiclassical 
limit h + 0 for E fixed. We also note that in the classical case Giorgilli and Galgani 
[5,6] obtain a better exponent a, essentially (Y = ( y + 2 ) - ' ,  independent of V. 

Theorem 1 has a consequence for propagators, which seems to be the first result 
establishing the intermediate time scale in the framework of quantum perturbation 
theory. 

Theorem 2. With constants as in theorem 1, and A ,  independent of E and h, we have 

1 1  (exp( -i tH, )  - exp( -itK,))P, / /  s AI h - * E  k ' 2 ~ a  

for /tis E *  exp[(e,/e)"]. 

The proof of theorem 1 is an adaptation to quantum perturbation theory of a proof 
of Nekhoroshev theorem given by Giorgilli and Galgani [ 5 ] ,  see also [7]. Note that 
the rigorous implementation of classical perturbation algorithms in quantum mechanics 
was initiated by Graffi and Paul [8], where a wlte-type ansatz in the Bargmann 
representation reduced the Schrodinger equation to a Hamilton-Jacobi equation with 
quantum corrections and allowed the calculation of the semiclassical limit for all terms 
of Rayleigh-Schrodinger series to all orders in h. These results were re-established by 
Degli Esposti, Graffi and Herczyriski [9] by implementing the perturbation theory 
based on the Lie method, where no generating functions in mixed variables and no 
Hamilton-Jacobi equations appear. Since Giorgilli and Galgani use the Lie method 
in their proof, we will follow [9]. 



Nekhorosheo type estimates for quantum propagators 2917 

We observe that Ali [ lo]  considered the Lie perturbation method in quantum 
mechanics. His results are formal in that he does not give the estimates of the operators 
involved, and thus cannot obtain, for instance, the unitary operator U,. He provides, 
however, a numerical test of the quantisation procedures. We point out also that a 
recent interesting application of Nekhoroshev like perturbation technique to the one- 
dimensional Schrodinger operator by Benettin et al [ l l ]  is based on rewriting the 
Schrodinger equation as a dynamical system (one-dimensionality is essential here) and 
then applying the Nekhoroshev approach in this classical situation. In  contrast, we 
implement here the classical perturbation algorithm directly in the Hilbert space. 

The plan of the paper is as follows. In section 2 we formulate the Lie perturbation 
algorithm in quantum mechanics and give the appropriate estimates. The proof of 
theorem 1 and theorem 2 is carried out in section 3. In the appendix we prove a lemma 
on polynomial perturbations necessary for our analysis. 

2. The Lie method in quantum mechanics 

Our first aim is to derive equations for perturbation theory of If, = H,+ EV, so we 
proceed formally and will consider the convergence problem later. Let W, = 
2,,"=o E'W,,, , where W, are self-adjoint operators. We will consider the equation 
U,H,UT = K,,  where U, is the unitary solution of ( d / d s )  U, = i U, W, ,  U, = I ,  so denote 
T,A = U , A U :  for any self-adjoint operator A and expand T, as a power series in E :  

T,A=C;=, e'T,A, where T,A= A (here W,,  W, are operators acting in the Hilbert 
space, and T,,  T, are operators acting on operators). We want to express T, in terms 
of W,. Differentiating T,A = U,AUT with respect to e we obtain 

d - T,A = UFi[ W,, A] UY: 
dE 

so letting LJA = i[ W,, A ]  we obtain 
n 

nT,,A= T,-,L,A 
, = I  

whence we can inductively find T, in terms of commutators with Wj, similarly to the 
Lie method in classical mechanics as discussed, for instance, in Lieberman and 
Lichtenberg [12]. These expressions for T,, were used by Degli Esposti, Graffi and 
Herczynski [9]. It turns out, however, that for the purposes of perturbation theory a 
different formulation is more convenient. We rewrite (5)  as 

d 
- T,A=i[U,W,UT,  T , A ] = i [ X , ,  T F ]  
d e  

where X ,  = U, W,U: = C;=o eJXJ+, , and letting L,A = i[X,, A ]  we obtain 

1 "  
T,,A=- L,T,_,A 

n 1 = ~  

similar to expressions considered by Giorgilli and Galgani [5] (see also [6]). 
All our estimates of U, will be expressed in terms of X,, therefore to ensure that 

the operator U, is then well defined, we need the following result. 

Lemma 1 .  If ilX,II S i p J  for any j, then I /  W,II S t ( 2 P ) ,  and W, is convergent for 
[ E (  < 1/2p. Moreover, if X, are self-adjoint, then so are W , .  
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Proof: The proof uses the result of lemma 2 below, which is independent of lemma 
1. Since X, = U* W, U,  = T, W,,  we have W ,  = XI  and 

for n 2 2. Now we prove the lemma inductively. For j = 1 it is immediate. Suppose 
we have l /y I ls$(2p) '  f o r j = l , .  . . , n - 1 .  Then by ( 7 )  and lemma 2 we find 

,, - I 0 - - I  

/ /  W,,llsl lX,,JI+ IIT,, i W , i , l s $ " + ~ p "  1 2 's1(2p) " .  
J = I  I i I 

The self-adjointness statement is obvious from ( 7 ) ,  and thus the lemma is proved. [7 

We next want to consider the convergence of Zl'-(, F'T, .  Although X ,  are bounded 
operators, we will have to consider expressions of the type T,,H,,, which are not 
bounded. We therefore introduce the following definitions. We say that an operator 
A is in the class F , ,  A E  F,,  if A is relatively bounded w i t h  respect to some power of 
H ,  and, moreover, ( e , ,  Ae, ) = 0 whenever 1 v - pi > J, where , ) denotes the scalar 
product in L ' ( R d )  (as in section 1, we put l i ~ ~ = Z ~  I lv l l ) .  Moreover, we let lIAIIL 
denote  APE^^, which is well defined since APL is, for any A, a finite-rank operator. 
Let U *  = sup ,= ,  rlwl .  The inequality 

IIABIIE = I ~ A P F ~ , h ~ u - B f F l ~ a  ~ ~ ~ 4 ~ ~ ~ - ~ h o A ~ ~ B ~ ~ t  

holds for B E  F, and arbitrary A. I f ,  furthermore, B is bounded, we obtain 

Lemma 2. Suppose X I  E F,,, / I  X I  I /  G $'  for j = 1 , 2 ,  . . . . Then 

l l ~ A l l E  d p i i i A i l F - J t '  

where = hkw*. 

Proof: For j = O  the result of the lemma is true. Suppose we have proved that 
I I T , A ~ / E ~ P ' I / A I I E + , ~  f o r j = O ,  . . . ,  n - 1 .  Then by (6) and (8) 

The lemma is proved. 0 

Lemma 2 can be used to estimate the remainder of the series Z,";o &'TA. 

Lemma 3. Suppose X I  are as in lemma 2. I f  A is bounded then I;=(, E'T,A is convergent 
for 1~1s 1/P and 

lIRr(A)ll s (1  - E P ) Y ' ( E P ) ' ~ ~ I / A / ~  

where R,(A) = U,AUT -E;=" €'TA. I f  A is such that IlAllF s CE",  then E:=, E 'T , (A)P~  
is convergent for I E ~  s 1/2P, for any E, and 

llRr(A)llE c CC,(E+ a ) K ( l  - ~ E P ) - ' ( ~ E P ) ' "  
where C, depends only on  K .  



Nekhoroshev type estimates for quantum propagators 2919 

Proof: The first part of the lemma follows by geometric series estimates, and the second 
from the inequality 

U 

With the above lemmas we can now proceed to write down the perturbation theory 

C(  E + jS) "  c CC,( E + % ) K 2 / .  

algorithm. Consider the equation 
x 

U , ( H o + & V ) U ; =  C E'K/ 
/ = o  

where we want K,  to commute with H o ,  i.e. to belong to FO.  Expanding in E ,  we 
rewrite the above as K O =  Ho and 

TnHo+ Tn-l  V =  K,. (9) 
Using (6), we rewrite (9) as 

1 
- [ X n ,  HO]+ V ' " ' =  K ,  
n 

where 

(10) 

Equation (10) is solved for X , ,  K,,, assuming X I , .  . . , X , , - l ,  and hence also V"", 
known, as follows. We have (e,,, [ X , ,  Ho le , )  = 0 for any U E N d ,  and we assume K,, E Fo. 
Therefore 

( e , , ,  &e,.) = ( e , , ,  V'"'e,,) (12) 
and  

( e" ,  v'"'e,) 
h w * ( p  - Y )  

(e,,, X,e , )  = n i  

for p # v. We put, by convention, (e , , ,  X,,e,,) = 0. We will be able to estimate the norm 
of X ,  using the Diophantine condition (2) and  the fact that Vi" '  E Fnk.  But before 
proceeding we will follow Giorgilli and  Galgani in deriving another expression for 
V"', more useful than (11). We find, using (6) and  (9),  that 

From our point of view the main value of the formula (14) is that it allows one to 
estimate the norm of V'"' when V is bounded. Moreover, we note that 

which may be more useful than (12), though we will not use it. 
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Equations (lo),  (12), (13) and  (14) constitute the perturbation algorithm based on 
the Lie method implemented directly in the Hilbert space. Because of the uniqueness 
of the Rayleigh-Schrodinger series for simple eigenvalues, (e,, K,e , )  will turn out to 
be E,(v). Note, however, that if V is a polynomial in q, then it is an  unbounded 
operator and  so will be X I ,  K ,  and in general all X I ,  and we will not be able to obtain 
the estimates needed for lemmas 3 and  4. Therefore we proceed in the following 
manner: instead of V we consider @ = PE,, VP,, for appropriately chosen E,. This is a 
bounded operator. Thus our  perturbation equations become 

I 
- [ X , ,  Ho]+ V’“’=k, ,  (15) n 

for n 2 2, V“’  = @, where ( e v ,  kneu) is the nth term of the Rayleigh-Schrodinger series 
for H,+ E @  for perturbation of E,( v). Equation (15) is solved as in (12), (13). Since 
now all operators X I ,  kJ are bounded, we may estimate the norm of V‘”’. This will 
depend on the norm of @ and hence on the choice of E , ,  to be discussed in the next 
section. 

It is easy to see inductively that V’“’,  X, E Fkn, and also that TnA E F5+,,h for A E F,. 
Observe also that since V“’ is self-adjoint, so are V‘”’  and X ,  for any n 2 1. Our  next 
step is to provide estimates for the iterative procedure (15), (16). 

Lemma 4. For any j = 1 , 2 , .  . . we have 

II V(’)Il l l@Il g( j ) ’ - ,  

II T-i@Il zs l l@ l l~ (A - ,  
where g(1)  = 1, g ( j )  = ( l / h ) 2 d t ’ C l k y + d / / @ ~ ~ j y - i - d i - ‘ ,  for j 2 2 .  

ProoJ The proof is by induction. F o r j  = 1, (16) and  (17) are obvious, so suppose we 
have them for j = 1 , .  . . , n - 1. Note first that by (12) 

I I ~ ~ I I  s / I  V ” ’ I I <  I I @ I I ~ ( J ) ~ - ’  (19) 

and  by (13), (2) and VIJ’€ F,k we have 

= $Z( j)’. 
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We now consider (18) for j = n. We find, by (6) and  (20), that 

s \ l @ l l  a( n ) " - ' .  

We pass to (17) for j = n and use the elegant formula (14) to obtain 

= p€ll 8( n)" - l .  

The lemma is proved. a 
For our purposes the estimate (20) is essential. It shows that if we carry out the 

perturbation theory to all orders we will not get the estimate IlX, I /  $'. needed for 
lemma 2 .  We will, instead, again follow Giogilli and Galgani [ 5 ]  by considering the 
perturbation theory up  to order r, putting p = 8( r ) ,  and then by choosing the best r ( & )  
to minimise the remainder. 

3. The proof of theorem 1 

We carry out the perturbation theory as described in the previous section up to order 
r and set X, = 0 for j 3 r. We then get IlX, I (  ;8( r)' for any j and we can apply lemma 
3 to estimate the remainder. The heart of the argument is the optimisation of this 
estimate for a given E by choosing the right r. In  contrast to Giorgilli and Galgani 
[ 5 ] ,  however, we also have to be careful to make the right choice of E, in the definition 
of @. We put E ,  = E + ( r  + 1)g where, we recall, 8 = hkw*. The following two lemmas 
justify this choice. 

Lemma 5. If E , = E + ( r + l ) E ,  then 

k,PE = K,PE 

for j =  1 , .  . . , r. 

Lemma 6. Assume that E < 1 /2p  and E > 8. If  Eo is as above, then 

I I u , ( v - c D ) u T ~ I ~  s C ~ E '  ' rA ' ( 2 e p l r  
where Cz depends only on  V and p = g ( r ) .  
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Lemma 5 is essential if we want to have the Rayleigh-Schrodinger series for Ho+ E V  
instead of Ho+ E @  in theorem 1. Lemma 6 gives the estimate similar to that of lemma 
3, which will be important in the optimisation step. 

Proof of lemma 5. For the purposes of this proof only, we introduce the following 
notation: X , ,  V(J1,  T, for perturbation theory of H,+ EV, g!, ?"I, for perturbation 
theory of H,+E@, V ' " =  V, ? ( I ) = @ .  We will show a stronger statement than (21), 
namely 

~ ' " P E 0 - , f  = v' "PEo-,( (22) 

for j~ r, from which (21) follows immediately. We prove (22)  by a kind of 'finite' 
induction for j s r, together with 

q - I @ p E n - ~ 6  = q-I v p E , , - / f .  (23) 

For j = 1 (22) and (23) are obvious. Suppose we have them for j = 1 ,  . . . , n < I: Then 
also XJPE,,--Jz = XJPE,-,r for j s n, and 

= TnVPEo-nl 

and similarly we prove, using (14), that (22) holds for j =  n + l .  The proof is thus 
complete. 0 

Proof of lemma 6. For O C R  let Pn denote the orthogonal projection onto 
span{e,: Eo( v )  E O}. Note that 

v = P E , ,  VP,, + ( I  - Ph,) v + V (  I - PE,,) 

= @ + P( E,.E,,+ b I v6 E,,-C.Eo] + vP( E,, ,x  

sincc V E Fk,  therefore putting E ,  = Eo - 8, we have 

1 1  v - @ ) u f I I E  

/I vp( El ,3c i U f 1 1  E 

We use now lemma 2 to note that we have 1 1  T,( V&JEI , , J+I ,E , l ) I IE  = 0 for E + t8 < j E , ,  
so we let t, = Int( ( j E ,  - E )/ 8) = Int( j r  + ( j  - 1 ) E /  8) and obtain, using lemma 3 and 
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Note now that E l  = E + r 8  s 2Er, and the result of lemma 6 follows. 

We finally come to the proof of theorem 1 and observe that 

Using lemma 3 ,  lemma 5 and  lemma 6 we find, for r 3 k, 

// U , ( H , + E V ) U ~ : - ~  E ' K ,  < - ? E h  ' ( 2 e p r ) '  
/ = 0 

0 

where neither C3 nor E* depends on r. This means we are now free to choose r as we 
please, and  it is easy tq see that the best choice is r ( E )  = Int( P( E ) ) ,  where 

We then have 
& r ( E ) Y  i ( e I - 1  Er( E ) ?  ''' 

(-) <(-) E* E* 
= exp( +) exp( - ! ( E  ) +). 

Note now that ? ( E ) +  = ( E , / E ) "  for E.+ = E,( + / e ) + ,  hence by ( 2 6 )  we obtain the estimate 
(3).  We now check the consistency of conditions imposed on E in the above argument. 
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We need r 2 k, used in (24), and 2Pe < 1 ,  used in lemma 1, lemma 3 and lemma 6. 
The first of these reduces to 

and is satisfied by the choice B = [ ( k + l ) f ] - ' .  The second, using P = 
, follows from (2 E* 1- I ,.( E Y + d  + 1 T A / ?  

E r ( E ) Y + d + l + k : 2  E?( E )  + <-- 2PE = - - -exp(- j ) .  
E* E* 

This completes the proof of theorem 1 .  0 

Using theorem 1, we can now give a simple proof of theorem 2. The identity 

= -i ~ ~ ' e x p ( - i ~ U ~ H ~ ~ ~ ) ( U ~ H ~ U ~ - ~ ~ )  exp[-i(t-s)K,] ds  

exp(-itU,H,UT) -exp(-it&) 

the fact that K ,  commutes with PE, and (3) yield 

for Itls E"  exp[(s , /~)" ] .  We use lemma 3 with r = O  to note that 
l~[exp(-itU,H,U~)-exp(-itK,)]P,I~ s A E "  (28) 

exp( -i t  U, H ,  UT) - exp( -i tH, ) = T, [ exp( -i tH, )]  - exp( -i tH, ) 
= R,[exp(-itH,)] 

can be estimated by 

since EP S i .  Using (25) we give another estimate of ~ P E ,  different from (27): 
Ilexp(-itU,H,UT) -exp(-itH,)II s ( 1  - P E ) - ' ~ E  ~ 2 p e  (29) 

Putting (281, (29) and the above together, and using the definition of E * ,  we obtain 
theorem 2. 0 
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Appendix 

The aim of this appendix is to prove the following lemma. 

Lemma A. Let V be a real polynomial of degree k. Then V E Fk and there exist C, > 0 
such that 

11 VI/ E C,E " ( A I )  
for E z l ,  h < l .  
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Prooj It is easiest to perform the proof in the Bargmann representation [8, 131, which 
was already used for the purposes of perturbation theory in  [ 8 , 9 ] .  We consider the 
Hilbert space of analytic functions 

in which the operator Ho becomes 

with eigenfunction e, ( z )  = ( h  v ! )  2 z 1 ,  v E Nd. Moreover, the multiplication by q, 
becomes (2, + ha/az,)/&, see [8], so we see that V becomes an operator of the form 

V =  1 Z?,BZ(yh'i:)fi ( ' 4 2 )  
u + p  h 

whence V E  FA is immediate. Moreover v , . ~  in (A2) are polynomials in h of degree 
less than k. Note now that 

for p v. Letting w j  = min{w,, . . . , wd,  i}, we find 

whence we obtain the estimate ( A l )  with 

The proof is complete. 0 
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